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Università di Trieste, Strada Costiera 11, 34014 Trieste, Italy

Received 8 August 2000

Abstract. Quantum dynamical semigroups are applied to the study of the time evolution of
harmonic oscillators, both bosonic and fermionic. Explicit expressions for the density matrices
describing the states of these systems are derived using the holomorphic representation. Bosonic
and fermionic degrees of freedom are then put together to form a supersymmetric oscillator; the
conditions that ensure supersymmetry invariance of the corresponding dynamical equations are
derived explicitly.

1. Introduction

The dynamics of a small system S interacting with a large environment E is, in general, very
complex and cannot be described in terms of evolution equations that are local in time. Possible
initial correlations and the continuous exchange of energy as well as entropy between S and
E produce irreversibility and dissipation phenomena.

Nevertheless, there are instances for which a simple and mathematically precise
description of the subdynamics can actually be given. When the typical time scale in the
evolution of the subsystem S is much larger than the characteristic time correlations in the
environment, one expects (and actually proves) the disappearance of memory and nonlinear
phenomena, although quantum coherence is usually lost [1–5].

In such cases, the states of S, conveniently described by a density matrix ρ, are seen to
evolve in time by means of a family of linear maps that obey very basic physical requirements,
such as forward in time composition (semigroup property) and complete positivity. They form
a so-called quantum dynamical semigroup [1–3].

This description of the time evolution of open quantum systems is actually very general;
it is applicable to all physical situations for which the interaction between S and E can be
considered to be weak and for times for which nonlinear disturbances due to possible initial
correlations have disappeared. In particular, quantum dynamical semigroups have been used
to model laser dynamics in quantum optics [6–8], to study the evolution of various statistical
systems [1–3] and to analyse the interaction of a microsystem with a macroscopic apparatus
[9–11].

Recently, they have been used to describe effects leading to irreversibility and dissipation
in elementary particle physics phenomena. Non-standard low-energy effects accompanied by
loss of quantum coherence are, in fact, expected to appear as a consequence of gravitational
quantum fluctuations at the Planck scale [12]. A detailed analysis of these effects has been
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performed for the system of neutral mesons [13–16], in neutron interferometry [17], neutrino
oscillations [18] and in the propagation of polarized photons [19, 20]; the outcome of these
investigations is that present and future elementary particle experiments will probably put
stringent bounds on these non-standard dissipative phenomena.

These studies, in particular those dealing with correlated neutral mesons [14, 21], have
also further clarified the importance of the condition of complete positivity in the description
of open quantum systems. In many investigations complete positivity is often replaced by
the milder condition of simple positivity; this guarantees the positivity of the eigenvalues of
the density matrix of the subsystem S, but not that of a more general system obtained by
trivially coupling S with an arbitrary n-level system. Lack of imposing this more stringent
requirement could lead to unacceptable physical consequences, such as the appearance of
negative probabilities [21].

To further analyse the properties of the quantum dynamical semigroup description of
open systems, we shall apply this general framework to the analysis of the evolution of one-
dimensional oscillators, both bosonic and fermionic (for earlier investigations on the bosonic
case, see [22–25] and references therein). We shall adopt the holomorphic representation
[26, 27, 23] since it allows an explicit description of the relevant density matrices in terms of
complex and Grassmannian (anticommuting) variables; in the simplest situations, the general
form of these density matrices turns out to be Gaussian. This allows the explicit evaluation of
the corresponding (von Neumann) entropy and analysis of its time evolution. Finally, we shall
combine bosonic and fermionic degrees of freedom to form a supersymmetric oscillator. We
shall then derive the conditions that guarantee the supersymmetric invariance of the dynamical
equations and discuss how these affect the time evolution of the total density matrix.

2. The bosonic oscillator

As explained in the introductory remarks, we shall study the dynamics of a single oscillator
interacting with a large environment. The states of the system will be represented by a density
matrix ρB , i.e. by a positive Hermitian operator, with constant trace, acting on the bosonic
Hilbert space HB . Our analysis is based on the assumption that its time evolution is given by a
quantum dynamical semigroup; this is a completely positive, trace-preserving, one-parameter
(i.e. time) family of linear maps, acting on the set {ρ} of bosonic density matrices. These maps
are generated by equations of the following general form [1–3]:

∂ρ(t)

∂t
= L[ρ(t)] ≡ −i[H, ρ(t)] + L[ρ(t)]. (2.1)

The first term in L is the standard quantum mechanical one, which contains the system
Hamiltonian H , driving the time evolution in the absence of an environment. In the case
of the bosonic oscillator, it can be taken to have the most general quadratic form in the bosonic
creation a† and annihilation a operators:

HB = 1
2 [ωB(a

†a + aa†) + µa2 + µ∗a†2] (2.2)

where ωB � 0 and µ is a complex parameter (the star denotes complex conjugation). The
second part L[ρ] takes into account the interaction with the environment; it is a linear
map, whose form is fully determined by the requirement of complete positivity and trace
conservation:

L[ρ] = − 1
2

∑
k

(L
†
kLkρ + ρL

†
kLk) +

∑
k

LkρL
†
k. (2.3)
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The operators Lk should be chosen such that the expression in (2.3) is well defined. In the
absence of the termL[ρ], pure states would be transformed into pure states. Instead, in general,
the additional part (2.3) produces dissipation and loss of quantum coherence.

The choice of the operators Lk is largely arbitrary. However, since the Hamiltonian HB

is quadratic in a† and a, one is led to also assume the same property for the additional term
L[ρ]. This implies a linear expression for the operators Lk:

Lk = rka + ska
† (2.4)

with rk and sk complex parameters; this requirement further guarantees the exact solvability of
the equation in (2.1). Note that the operators (2.4) are not bounded; nevertheless, by adapting
the arguments presented in [22] to the present case, one can show that the exponential map
generated by (2.1) is well defined.

This description of the damped bosonic oscillator can be further simplified by means of a
suitable canonical transformation. First, note that not all values of the oscillator frequency ωB

and the complex parameter µ are physically allowed. Indeed, the spectrum of the Hamiltonian
in (2.2) is bounded from below only for

ω2
B − |µ|2 � 0. (2.5)

This is a consequence of the fact that H is an element of the Lie algebra su(1, 1), whose
generators in the so-called metaplectic representation take the form

K0 = 1
4 (a

†a + aa†) (K+)
† = K− = 1

2a
2. (2.6)

The condition (2.5) guarantees that H can be unitarily ‘rotated’ to an element of the Cartan
algebra with the spectrum being bounded from below [23].

In other terms, by means of a unitary canonical transformation, one can now pass to new
operators [26, 28]:

ã = �a + �a† ã† = �∗a + �∗a† (2.7)

with

� =
√
ωB + �B

2�B

� = µ∗
√

2�B(ωB + �B)
�B =

√
ω2
B − |µ|2 (2.8)

such that the Hamiltonian takes the simplified form

HB = 1
2�B{ã†, ã}. (2.9)

The operators Lk in (2.3) are still linear in the new variables ã† and ã, although with redefined
coefficients.

This discussion shows explicitly that, without loss of generality, one can set µ = 0 in
(2.2); a non-vanishing µ can always be reinstated at the end by undoing the transformation
(2.7). With this choice, the evolution equation (2.1) for the bosonic oscillator becomes

∂ρB(t)

∂t
= LB[ρB(t)] ≡ −iωB[a†a, ρB(t)] + LB[ρB(t)] (2.10)

where, by inserting (2.4) into (2.3), one has

LB[ρ] = ηB([aρ, a
†] + [a, ρa†]) + σB([a

†ρ, a] + [a†, ρa]) − λ∗
B[a, [a, ρ]] − λB[a†, [a†, ρ]]

(2.11)
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with

ηB = 1
2

∑
k

|rk|2 σB = 1
2

∑
k

|sk|2 λB = 1
2

∑
k

r∗
k sk. (2.12)

Note that from these expressions one deduces that

ηB � 0 σB � 0 |λB |2 � ηBσB (2.13)

the last relation being a consequence of the Schwartz inequality; let us remark that these are
precisely the conditions that ensure complete positivity of the time evolution generated by the
operator LB in (2.11).

In order to study the solutions of equation (2.10), we shall work in the holomorphic
representation [26–28, 23]; it allows one to derive explicit expressions for the density matrix
ρB(t) so that its behaviour in various regimes can be more easily discussed. In this formulation,
the elements |ψ〉 of the bosonic Hilbert space HB are represented by holomorphic functions
ψ(z̄) of the complex variable z̄, with the inner product†

〈φ|ψ〉 =
∫

ψ∗(z)φ(z̄) e−z̄z dz̄ dz. (2.14)

To every operator O acting on HB there corresponds a kernel O(z̄, z) of two independent
complex variables z̄ and z, such that for the state |φ〉 = O|ψ〉 one finds the representation

φ(z̄) =
∫

O(z̄, w)ψ(w̄) e−w̄w dw̄ dw. (2.15)

In particular, the creation and annihilation operators, when acting on a state |ψ〉, are realized
by multiplication and differentiation by the variable z̄:

a†|ψ〉 → z̄ψ(z̄) a|ψ〉 → ∂

∂z̄
ψ(z̄) (2.16)

while the identity operator is represented by ez̄z.
Since the term LB in (2.10) is at most quadratic in a† and a, the kernel ρB(z̄, z; t)

representing the solution of (2.10) can be taken to be of a generic Gaussian form:

ρB(z̄, z; t) = 1√
N(t)

exp

[
− 1

2N(t)

[
2y(t)z̄z − x̄(t)z2 − x(t)z̄2

]
+ z̄z

]
. (2.17)

Trace conservation for all times,

Tr[ρB(t)] =
∫

ρB(z̄, z; t) e−z̄z dz̄ dz = 1 (2.18)

readily implies:

N(t) = y2(t) − |x(t)|2 (2.19)

while using (2.16) one finds that the unknown functions x(t), x̄(t) = [x(t)]∗ and y(t) have the
following physical meaning:

〈a2〉(t) ≡ Tr[a2ρB(t)] =
∫

∂2

∂z̄2
[ρB(z̄, z; t)] e−z̄z dz̄ dz = x(t)

〈a†2〉(t) ≡ Tr[a†2ρB(t)] =
∫

z̄2ρB(z̄, z; t) e−z̄z dz̄ dz = x̄(t)

〈aa†〉(t) ≡ Tr[aa†ρB(t)] =
∫

∂

∂z̄
[z̄ρB(z̄, z; t)] e−z̄z dz̄ dz = y(t).

(2.20)

† Here and in the following we use the conventions of [26].
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For simplicity, in writing (2.17) we have assumed 〈a†〉(t) = 〈a〉(t) = 0 for all times. As shown
in the appendix, this condition can be easily realized starting with a more general ansatz for
ρB(z̄, z; t); it will not be needed for the considerations that follow.

Inserting (2.17) in the evolution equation (2.10), with the help of the relations (2.16) one
finds that the unknown functions x(t) and y(t) satisfy the following linear equations:

ẋ(t) = −2(ηB − σB + iωB)x(t) − 2λB

ẏ(t) = −2(ηB − σB)y(t) + 2ηB.
(2.21)

General solutions can be easily obtained. For initial values x0 ≡ x(0), y0 ≡ y(0) and ηB �= σB ,
one finds

x(t) = E(t) e−2iωBt (x0 − x∞) + x∞

y(t) = E(t)(y0 − y∞) + y∞
(2.22)

where

E(t) = e−2(ηB−σB)t x∞ = λB(σB − ηB + iωB)

(ηB − σB)2 + ω2
B

y∞ = ηB

ηB − σB
(2.23)

while in the particular case ηB = σB :

x(t) = e−2iωBt (x0 − xc) + xc xc = i
λB

ωB

y(t) = 2ηBt + y0.

(2.24)

The large-time behaviour of these solutions depends on the relative magnitude of the two
positive parameters ηB and σB . Only when ηB > σB , do the functions x(t) and y(t) have a
well defined limit. In this case, independently from the initial conditions, the density matrix
ρB(t) approaches the equilibrium state ρ∞

B for large t , which is obtained by substituting in
(2.17) the asymptotic values x∞ and y∞ for x(t) and y(t). Indeed, ρ∞

B is clearly a fixed point
of the evolution equation (2.10), for any value of ηB and σB .

Note that ρ∞
B does not correspond, in general, to a thermal equilibrium state; to obtain an

asymptotic Gibbs distribution, one has to set λB = 0 and introduce the inverse temperature
β via the condition y∞ = [coth(βωB/2) + 1]/2 (compare with (2.27) and (2.28) below), or
equivalently eβωB = ηB/σB .

On the other hand, when ηB < σB , the exponential term E(t) in (2.22) blows up for
large times, while in the special case ηB = σB , y(t) grows linearly in time and x(t) has an
oscillatory behaviour. In both cases, for generic initial conditions, the normalization factor
N(t) in (2.19) grows unbounded, so that the functional ρB(z̄, z; t) becomes vanishingly small,
while retaining its normalization, Tr[ρB(t)] = 1†.

This peculiar behaviour can also be analysed with the help of the Weyl operators:

W [ν] = eνa+ν̄a†
. (2.25)

By studying the time evolution of W induced by (2.10) via the relation Tr[W(t)ρB] ≡
Tr[WρB(t)], one finds that when ηB > σB all Weyl operators remain well defined for all
t , approaching the identity for large times; on the other hand, for ηB � σB one discovers that
all Weyl operators vanish in the large-time limit, except the identity W [0], which is clearly a
fixed point of the time evolution.

† For ηB < σB , the exception is given by ρB(t) ≡ ρ∞
B , since, as noted before, x∞ and y∞ are fixed points of (2.21).

Note that y∞ blows up for ηB = σB , so that ρ∞
B also becomes vanishingly small in this limit. Consequently, the

infinite temperature limit is singular.
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As mentioned in the introduction, the entropy of an open system usually varies with time,
due to the interaction with the environment. In many physical instances, a monotonic increase
of the von Neumann entropy,

S[ρ] ≡ − Tr[ρ ln ρ] = −〈ln ρ〉 (2.26)

is a desirable property [1–3, 13–20]. For the damped oscillator described by the evolution
equation (2.10), this request cannot be fulfilled, in general, if one insists on the existence of a
well behaved large-time equilibrium limit.

The explicit evaluation of SB ≡ S[ρB] is simplified by noticing that to the representation
kernel (2.17) there corresponds the operator ansatz:

ρB =
[

4

coth2(�/2) − 1

]1/2

e− 1
2 [A(aa†+a†a)+Ba2+B̄a†2] (2.27)

where the parameters A and B are related to x and y of (2.17) through the relations:

x = − B

2�
coth

�

2
y = 1

2

[
A

�
coth

�

2
+ 1

]
� = (A2 − |B|2)1/2. (2.28)

Inserting these relations in the definition (2.26), one obtains

SB = − 1
2 ln

[
4

coth2(�/2) − 1

]
+ 1

2 [A〈aa† + a†a〉 + B〈a2〉 + B̄〈a†2〉]. (2.29)

It is now convenient to introduce the following quantity:

χ2 ≡ 1
4 〈aa† + a†a〉2 − 〈a2〉〈a†2〉

= (y − 1
2 )

2 − |x|2 = 1
4 coth2 1

2� (2.30)

such that χ � 1
2 ; in terms of this variable, one can easily rewrite (2.29) as

SB = (χ + 1
2 ) ln(χ + 1

2 ) − (χ − 1
2 ) ln(χ − 1

2 ). (2.31)

The entropy SB always grows with χ , starting at the minimum SB = 0 for χ = 1
2 and

increasing as ln χ for large χ . Recalling the explicit time dependence of x and y in (2.22) and
(2.24), one realizes that, in general, for ηB �= σB the variable χ does not grow monotonically
with t , so that the condition ṠB � 0 cannot be satisfied for all times. In particular, when
ηB > σB the equilibrium state ρ∞

B is reached, in general, at the expense of some negative
entropy exchange with the environment.

The case ηB = σB is again special; in fact, the operators Lk in (2.4) are now Hermitian
and therefore the condition ṠB � 0 is guaranteed. Indeed, in this case χ approaches infinity
for large times, and therefore so does SB . Alternatively, using (2.3) in the definition (2.26),
one can show directly that [29]

ṠB �
〈 ∑

k

[Lk, L
†
k]

〉
= 2(σB − ηB). (2.32)

Note, however, that Lk = L
†
k is only a sufficient condition for entropy increase. Indeed,

for ηB > σB take x0 = x∞ and y0 � y∞; in this case χ grows with time since ẏ(t) is always
positive, and therefore SB also never decreases.
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3. The fermionic oscillator

We shall now extend the analysis of the previous section to the case of a fermionic oscillator.
The corresponding creation α† and annihilation α operators now obey the following algebra:

{α, α†} = 1 α2 = α†2 = 0. (3.1)

As in the bosonic case, we shall assume the system to be interacting with a large environment,
and describe its time evolution by means of a quantum dynamical semigroup.

The states of the system will be described by an appropriate density matrix ρF , acting on
the elements of the fermionic Hilbert space HF . This operator obeys an evolution equation of
the form (2.1), where now the Hamiltonian can be taken to be

HF = 1
2ωF [α†, α] ωF � 0. (3.2)

Since α† and α are now nilpotent, the additional piece L[ρ] in (2.3) turns out to be at most
quadratic in these variables, and the operators Lk assume the generic form

Lk = r ′
kα + s ′

kα
†. (3.3)

Inserting this in (2.3), one explicitly finds

LF [ρ] = ηF (2αρα
† − α†αρ − ρα†α) + σF (2α

†ρα − αα†ρ − ραα†)

+2(λ∗
Fαρα + λFα

†ρα†) (3.4)

where the parameters ηF , σF and λF are as in (2.12) with the coefficients rk and sk replaced
by the primed ones. Then, the complete evolution equation for the density matrix ρF takes the
form

∂ρF (t)

∂t
= LF [ρF (t)] ≡ −iωF [α†α, ρF (t)] + LF [ρF (t)]. (3.5)

The study of the solutions of this equation in the holomorphic representation requires the
introduction of Grassmann variables θ , ξ , . . . , that anticommute with the operators α† and α,
and such that

θξ = −ξθ θ2 = ξ 2 = 0. (3.6)

The elements |ψ〉 of the Hilbert space HF are now holomorphic functions ψ(θ̄) of the variable
θ̄ . However, since θ̄2 = 0, their Taylor expansion contains only two terms: ψ(θ̄) = ψ0 +ψ1θ̄ ,
with ψ0 and ψ1 complex parameters; they clearly represent the components of |ψ〉 along the
vacuum and one-fermion states†.

The inner product of two states |φ〉 and |ψ〉 involves the integration over anticommuting
variables (Berezin integral), defined by the conditions

∫
θ dθ = 1 and

∫
dθ = 0 [26]:

〈φ|ψ〉 =
∫

ψ∗(θ)φ(θ̄) e−θ̄ θ dθ̄ dθ (3.7)

where ψ∗(θ) = ψ∗
0 + θψ∗

1 is by definition the adjoint of ψ(θ̄).
Similarly, to an operator O acting on HF there corresponds a kernel O(θ̄ , θ); the result of

its action on the vector |ψ〉 is given by

φ(θ̄) =
∫

O(θ̄ , ξ)ψ(ξ̄ ) e−ξ̄ ξ dξ̄ dξ. (3.8)

† Since the fermionic oscillator is a two-level system, a simple correspondence between the holomorphic and the
standard matrix representation can easily be established; however, working with the holomorphic representation is, in
general, more convenient, since explicit, closed expressions for ρF can always be given, even in presence of n degrees
of freedom. See also the discussion in section 5.
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Note that the identity operator is represented by the kernel eθ̄ θ . Furthermore, within this
framework the fermionic creation and annihilation operators are realized by left multiplication
and differentiation with respect to θ̄ :

α† → θ̄ α → ∂

∂θ̄
(3.9)

so that α† is indeed the adjoint of α with respect to the inner product in (3.7).
As in the bosonic case, since LF in (3.5) is quadratic in the operators (3.9), the kernel

ρF (θ̄ , θ; t) representing the state ρF of the system can be taken to be of Gaussian form:

ρF (θ̄ , θ; t) = γ (t) e−θ̄1(t)θ . (3.10)

For simplicity, in this case we also assume 〈α†〉 = 〈α〉 = 0 for all times, so that terms linear in
θ̄ and θ are absent in (3.10). A more general ansatz for ρF (θ̄ , θ; t) is discussed in the appendix.
The normalization condition

Tr[ρF (t)] =
∫

ρF (θ̄ , θ; t) eθ̄ θ dθ dθ̄ = 1 (3.11)

readily implies γ (t) = [1 − 1(t)]−1, so that the kernel ρF in (3.10) contains only one
independent unknown function. It can be conveniently rewritten in the following form:

ρF (θ̄ , θ; t) = γ (t) + [1 − γ (t)]θ̄ θ (3.12)

showing explicitly that γ and 1−γ represent the two eigenvalues of ρF†. Finally, the physical
meaning of γ (t) can easily be derived:

〈αα†〉(t) ≡ Tr[αα†ρF (t)] =
∫

∂

∂θ̄
[θ̄ρF (θ̄ , θ; t)] eθ̄ θ dθ dθ̄ = γ (t). (3.13)

Insertion of (3.12) in the evolution equation (3.5) allows one to derive the equation satisfied
by the unknown function γ (t):

γ̇ (t) = −2(ηF + σF )γ (t) + 2ηF (3.14)

whose general solution is simply

γ (t) = e−2(ηF +σF )t (γ0 − γ∞) + γ∞ (3.15)

where γ0 = γ (0) is the initial condition, while

γ∞ = ηF

ηF + σF
. (3.16)

Since ηF and σF are positive constants, both γ (t) and 1 − γ (t) are non-negative, so that
0 � γ (t) � 1. Furthermore, independently from the initial condition, for large times the
density matrix ρF describing the state of the fermionic oscillator always approaches the
equilibrium configuration: ρ∞

F = γ∞ + (1 − γ∞)θ̄θ ; this is a thermal state, provided the
inverse temperature β is introduced via the relation eβωF = ηF /σF , with ηF � σF .

The evolution towards equilibrium is not, in general, associated with a monotonic increase
of the von Neumann entropy S[ρF ] ≡ SF . Its explicit expression can be computed using the
definition (2.26):

SF (t) = −γ (t) ln γ (t) − [1 − γ (t)] ln[1 − γ (t)] (3.17)

† Note that this simple rewriting of the Gaussian ansatz is possible only in one dimension; in the presence of n degrees
of freedom, the covariance 1 would be an n× n Hermitian matrix and the Taylor expansion of (3.10) would be much
more involved.



Damped harmonic oscillators in the holomorphic representation 8147

while its time derivative reads as ṠF = γ̇ [ln(1 − γ )− ln γ ]; one can easily check using (3.14)
and (3.15) that ṠF is always negative when γ lies between 1

2 and γ∞, while it is positive outside
this interval.

More precisely, as a function of γ , SF grows from its minimum value SF = 0 at γ = 0
up to its maximum SF = ln 2 reached for γ = 1

2 , and then decreases, becoming zero again at
γ = 1. Therefore, SF grows monotonically only when γ (t) increases in the interval [0, 1

2 ],
or decreases in the interval [ 1

2 , 1]. For ηF < σF , this happens when γ0 � γ∞; indeed, this
implies γ (t) � γ∞ < 1

2 and γ̇ (t) � 0 for all times. Similar conditions hold when ηF > σF ;
in this case to obtain a monotonic increase of entropy, one has to choose γ0 � γ∞, so that
γ (t) � γ∞ > 1

2 and γ̇ (t) � 0 for all t .
The case ηF = σF is somehow special, since now ṠF � 0 independent of the choice of

initial state; the density matrix ρF approaches asymptotically the infinite-temperature, totally
disordered state ρ∞

F = eθ̄ θ /2, for which the entropy is maximal, SF = ln 2.
As a final remark, note that in the case of the fermionic oscillator the sufficient condition

for entropy increase discussed at the end of the previous section does not lead, in general, to
useful constraints. Indeed, the inequality in (2.32) now gives the condition

ṠF (t) � 2(ηF − σF )[1 − 2γ (t)]. (3.18)

Unless ηF = σF , the right-hand side of this inequality always becomes negative for large
enough times, as can be easily realized by substituting for γ (t) its asymptotic value γ∞.

4. The supersymmetric oscillator

We shall now discuss the behaviour of an oscillator composed of both bosonic and fermionic
degrees of freedom interacting with an environment, under the hypothesis that its evolution
is described by a quantum dynamical semigroup. The density matrix ρ representing the state
of the system is now an operator on the Hilbert space H = HB ⊕ HF . Its time evolution
is described by an equation of the form (2.1), where both the total Hamiltonian H and the
dissipative part L[ρ] are expressed in terms of bosonic, a†, a, and fermionic, α†, α, creation
and annihilation operators, obeying

[a†, α†] = [a†, α] = [a, α†] = [a, α] = 0 (4.1)

together with the standard commutation, anticommutation relations.
The Hamiltonian H = HB + HF , the sum of the bosonic and fermionic terms of the

form (2.9) and (3.2), possesses an additional property when the two frequencies are equal:
ωB = ωF = ω. Indeed, the following charges:

Q+ = ω1/2aα† Q− = ω1/2a†α (4.2)

commute with the Hamiltonian H = ω(a†a + α†α), and, furthermore,

{Q+,Q−} = H Q2
+ = Q2

− = 0. (4.3)

This is the simplest example of a supersymmetry algebra. The system described by H is
therefore supersymmetric and the conserved supercharges Q+ and Q− exchange bosons and
fermions; furthermore, from the algebra (4.3) one deduces that the ground state of H is a
zero-energy singlet and that all excited states form degenerate doublets.

The additional piece L[ρ] in the evolution equation (2.1) will be taken to be the sum of
the bosonic LB[ρ] and fermionic LF [ρ] linear operators already introduced in the previous
sections. This is a natural choice since it ensures integrability of the time evolution (L[ρ]
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is again at most quadratic in the creation and annihilation operators), while avoiding mixing
between bosonic and fermionic degrees of freedom induced by the dissipative term; in other
terms, L[ρ] is thus bosonic in character.

Nevertheless, this simple form of L[ρ] does not, in general, ensure supersymmetry
invariance. In ordinary quantum mechanics, to an invariance of the Hamiltonian there always
corresponds a conservation law and vice versa. For time evolution generated by equations of
the form (2.1) this is usually not true: charge conservation and invariance (or symmetry) give
rise to two different and, in general, unrelated conditions.

To elaborate further on this point, note that to the evolution equation (2.1) for the
density matrix ρ there corresponds an analogous evolution for any operator X representing an
observable of the system

∂

∂t
X = L∗[X] ≡ i[H,X] + L∗[X] (4.4)

where the linear operator L∗ is the ‘dual’ of L and it is defined via the following identity:

Tr(L∗[X]ρ) ≡ Tr(XL[ρ]). (4.5)

Consider now a symmetry of the Hamiltonian H generated by the charge G, inducing the
following transformation on the observables:

X → X′ = U−1XU U = eiG. (4.6)

This transformation will be an invariance of the system only when it is compatible with the
evolution equation (4.4), i.e. L∗[X′] = U−1L∗[X]U , for any X; equivalently, in infinitesimal
form:

[G,L∗[X]] = L∗[[G,X]]. (4.7)

This condition is clearly distinct from the relation that guarantees the time conservation of the
mean value 〈G〉 ≡ Tr[Gρ(t)] of the generator G; recalling (2.1) and (4.5), from the condition
d/dt〈G〉 = 0 for any state, one readily derives

L∗[G] = 0. (4.8)

In the case of the supersymmetric oscillator, the dual map L∗[X] = L∗
B[X] + L∗

F [X] can
be easily deduced from (2.11) and (3.4). Explicitly, one finds

L∗
B[X] = ηB(2a

†Xa − Xa†a − a†aX) + σB(2aXa† − Xaa† − aa†X)

+λB(2a
†Xa† − Xa†2 − a†2X) + λ∗

B(2aXa − Xa2 − a2X)

L∗
F [X] = ηF (2α

†Xα − Xα†α − α†αX) + σF (2αXα† − Xαα† − αα†X)

+2λFα
†Xα† + 2λ∗

FαXα.

(4.9)

The parameter of a supersymmetry transformation is anticommuting, so that the corresponding
generator takes the form G = ξQ+, where ξ is a Grassmann variable, commuting with bosonic
operators, but anticommuting with the fermionic ones. Inserting it in (4.7) and using (4.9),
after some algebraic manipulations one obtains the following condition:

(ηB − σB − ηF + σF )[X,G] + λ∗
F {X,G†} = 0. (4.10)

Since this relation must be true for any observable X, supersymmetry invariance is only
compatible with the time evolution when

ηB − σB = ηF − σF λF = 0. (4.11)
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The holomorphic representation is again particularly useful in order to discuss the
behaviour of the state ρ(t) of the supersymmetric oscillator. The elements of the Hilbert
space H will now be represented by holomorphic functions of the complex variable z̄ and of
the Grassmann symbol θ̄ , while creation and annihilation operators will act on them following
the rules in (2.16) and (3.9). The density matrix ρ will now be a kernel ρ(z̄, z; θ̄ , θ), whose
explicit expression can be taken to be of Gaussian form†. It can be expanded as

ρ(z̄, z; θ̄ , θ) = ρ0(z̄, z) + ρ1(z̄, z)θ̄θ. (4.12)

The normalization condition Tr[ρ] = 1 now involves both ordinary and Grassmann integrals:∫
ρ(z̄, z; θ̄ , θ) e−z̄zeθ θ̄ dz̄ dz dθ dθ̄ =

∫
[ρ0(z̄, z) + ρ1(z̄, z)] e−z̄z dz̄ dz = 1. (4.13)

Inserting the ansatz (4.12) into the evolution equation for ρ allows one to derive the
following conditions on the bosonic kernels ρ0 and ρ1:

ρ̇0(t) = LB[ρ0(t)] + 2[ηFρ1(t) − σFρ0(t)] (4.14a)

ρ̇1(t) = LB[ρ1(t)] − 2[ηFρ1(t) − σFρ0(t)] (4.14b)

where the linear operator LB[ρ] is as in (2.10). It follows that the combination ρ0 +ρ1 satisfies
the same evolution equation discussed in section 2 for the case of a single bosonic oscillator.
The Gaussian ansatz ρB(z̄, z) in (2.17) can equally well be adopted here for ρ0 + ρ1, since
performing the Grassmann integrations, one consistently finds (compare with (2.20)):

〈a2〉(t) ≡ Tr[a2ρ(t)] =
∫

∂2

∂z̄2
[ρ0(z̄, z; t) + ρ1(z̄, z; t)] e−z̄z dz̄ dz = x(t)

〈a†2〉(t) ≡ Tr[a†2ρ(t)] =
∫

z̄2[ρ0(z̄, z; t) + ρ1(z̄, z; t)] e−z̄z dz̄ dz = x̄(t)

〈aa†〉(t) ≡ Tr[aa†ρ(t)] =
∫

∂

∂z̄
z̄[ρ0(z̄, z; t) + ρ1(z̄, z; t)] e−z̄z dz̄ dz = y(t).

(4.15)

Consequently, the time evolution of these quantities is that given in (2.22) and (2.24).
Inserting this result back into (4.14a), one obtains

ρ̇0(t) = LB[ρ0(t)] − 2(ηF + σF )ρ0(t) + 2ηFρB(t). (4.16)

The form of this equation suggests one should look for a solution in which ρ0(t) differs from
ρB(t) by an unknown multiplicative function γF (t). It can be identified with the function γ (t)

studied in the previous section, since it satisfies the same equation (3.14) and has the same
physical meaning:

〈αα†〉(t) ≡ Tr[αα†ρ(t)] =
∫

ρ0(z̄, z; t) e−zz̄ dz dz̄ = γF (t). (4.17)

Consequently, ρ1 = (1 − γF )ρB , and therefore one finally finds

ρ(z̄, z; θ̄ , θ) = [γF + (1 − γF )θ θ̄ ]ρB(z̄, z) ≡ ρF (θ̄ , θ)ρB(z̄, z). (4.18)

Not surprisingly, the density matrix that solves the evolution equation (2.1) in the case
of the supersymmetric oscillator is in factorized form; its behaviour can be deduced from the
analysis of the previous sections, provided the conditions (4.11) for supersymmetry invariance
are taken into account.

† Here again we assume vanishing initial averages 〈a†〉, 〈a〉, 〈α†〉, 〈α〉.
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In particular, ρ approaches an equilibrium state for large times only when ηB > σB , which
also implies ηF > σF . This limiting state is thermal, with inverse temperature β, only for
λB = 0 and ηB/σB = ηF /σF = eβω, which implies, recalling the condition (4.11): ηB = ηF
and σB = σF [30].

Also in the case of the supersymmetric oscillator, the total entropy does not have, in
general, a monotonic behaviour during the approach to equilibrium. Since the density matrix
ρ is in factorized form, the total entropy S will be the sum of the bosonic and fermionic
contributions. Using the variable γB = χ − 1

2 � 0, where χ is defined as in (2.30), and
recalling the results of the previous sections, one has

S = (γB + 1) ln(γB + 1) − γB ln γB − (γF − 1) ln(γF − 1) − γF ln γF . (4.19)

Its time derivative, that can be expressed as

Ṡ = γ̇B ln

(
1 +

1

γB

)
+ γ̇F ln

(
1 − 1

γF

)
(4.20)

does not have, in general, a definite sign, although possible compensation between the bosonic
and fermionic contributions can concur to a positive right-hand side for certain time intervals.

As discussed at the end of section 2, a bound on Ṡ can be obtained by working directly
with the definition (2.26) and equation (2.1). In the present case, this procedure gives

Ṡ � 2(σB − ηB) + 2(σF − ηF )[2γF − 1] ≡ 4(σF − ηF )γF (4.21)

where the identity is a consequence of the condition (4.11). Since 0 � γF (t) � 1, the inequality
(4.21) ensures Ṡ � 0 for σF � ηF . However, this condition would lead to a rather singular
behaviour for the bosonic part of the density matrix in (4.18), and thus for the whole ρ. In
fact, σB would also be greater than ηB and, as discussed in section 2, this implies an infinitely
growing average occupation number. In conclusion, although inducing a partial compensation
between the bosonic and fermionic contributions to S, the supersymmetry condition (4.11)
is, in general, not enough to guarantee a monotonic entropy increase for all times during the
evolution of the system.

5. Discussion

All the considerations developed in the previous sections for single oscillators can be
generalized to the case of n independent oscillators, both bosonic and fermionic. Their
interaction with an external environment can still be consistently described in terms of quantum
dynamical semigroups, so that their time evolution can be modelled by means of equations
of the form (2.1) and (2.3), with operators Lk linear in the relevant fundamental variables.
However, the coefficients r and s of (2.4) now become matrices, and the number of independent
constants characterizing the dissipative partL[ρ] rapidly increase with n, making the evolution
equation (2.1) rather involved.

Nevertheless, various simplifying conditions can be imposed to reduce this arbitrariness,
at least in part. Those involving symmetry properties are the most physically interesting.
As discussed in the introduction, the interaction between the system and the environment
can be considered, in general, to be weak; therefore, in many instances, the presence of the
environment should not be able to alter the symmetry properties of the system. In the case
of n isotropic oscillators, the Hamiltonian is invariant under the action of the group SU(n); it
is then quite natural to assume the same invariance property to be valid for the full evolution
equation. As discussed in section 4, this can be achieved by imposing the condition (4.7) for
any element G of the SU(n) algebra.
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Also in this more general setting, the holomorphic representation appears to be a
particularly convenient framework to analyse the behaviour of the solutions of (2.1). It requires
the introduction of n commuting or anticommuting complex symbols, that allow one to realize
the corresponding creation and annihilation operators as multiplication and differentiation by
these variables. The kernel representing the system density matrix can still be taken to have a
generic Gaussian functional expression. However, the various ‘coefficients’ in the exponent,
suitable generalizations of the functions x, x̄ and y in the bosonic case and of1 in the fermionic
one, now become n×n matrices. They obey quadratic (Riccati-like) time evolution equations,
whose solutions can always be obtained, albeit, in general, in terms of implicitly defined
functions [31, 32].

Although developed in the analysis of simple open systems, the techniques described in
the previous sections are actually very general; they can be used to study the dynamics of
more complicated models, for which the operator L in (2.1) is not quadratic in the relevant
variables. In these cases, complete explicit expressions for the density matrix ρ as a solution
of (2.1) cannot, in general, be given. Nevertheless, approximate expressions for ρ, typically
in Gaussian form, can be obtained via the application of suitable variational procedures.

Indeed, equations of the form (2.1) can be derived by means of a suitable variational
principle [33], obtained by generalizing the one yielding the Liouville–von Neumann equation
in ordinary quantum mechanics [28, 34]. In the case of isoentropic time evolutions,
these variational techniques have allowed detailed discussions of a wide range of physical
phenomena, from statistical physics to inflationary cosmology [34, 35]. Their application to
the study of quantum dynamical semigroups within the framework presented in the previous
sections will surely provide new insights into the behaviour of open quantum systems.

Appendix

The Gaussian kernels ρB(z̄, z; t) and ρF (θ̄ , θ; t) representing the density matrices for the
bosonic and fermionic oscillators discussed in sections 2 and 3 lead to vanishing averages for
the corresponding creation and annihilation operators. This condition can easily be released
by introducing a more general ansatz.

In the bosonic case, take

ρB(z̄, z; t) = 1√
N(t)

e− 1
2N(t)

[2y(t)[z̄−v̄(t)][z−v(t)]−x̄(t)[z−v(t)]2−x(t)[z̄−v̄(t)]2]+z̄z (A.1)

that differ from the expression (2.17) because of the presence of the two additional functions
v(t) and v̄(t). The trace conservation for all times, Tr[ρB(t)] = 1, still implies

N(t) = y2(t) − |x(t)|2 (A.2)

while Hermiticity requires v̄(t) ≡ [v(t)]∗. With this choice for ρB(z̄, z; t), the averages of a†

and a are, in general, non-vanishing:

〈a†〉(t) ≡ Tr[a†ρB(t)] =
∫

z̄ρB(z̄, z; t) e−z̄z dz̄ dz = v̄(t)

〈a〉(t) ≡ Tr[aρB(t)] =
∫

∂

∂z̄
[ρB(z̄, z; t)] e−z̄z dz̄ dz = v(t).

(A.3)

The time evolution equation (2.10) implies the following homogeneous equation for v(t):

v̇(t) = 2(ηB − σB + iωB)v(t) (A.4)
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so that v(t) is non-vanishing only if its initial value v(0) is different from zero:

v(t) = e−(ηB−σB+iωB)t v(0). (A.5)

The physical meaning of the remaining functions x, x̄ and y appearing in (A.1) is slightly
changed with respect to those studied in section 2; now one finds

x = 〈a2〉 − 〈a〉2

x̄ = 〈a†2〉 − 〈a†〉2

y = 〈aa†〉 − 〈a〉〈a†〉.
(A.6)

Nevertheless, one can check that these functions still obey the evolution equations (2.21), so
that the considerations and the discussions of section 2 apply to this more general situation as
well.

In the case of the fermionic oscillator, the most general Gaussian ansatz for the kernel
ρF (θ̄ , θ; t) can be written as

ρF (θ̄ , θ; t) = γ (t) e− 1
γ (t)

[θ̄7(t)θ−ϕ̄(t)θ−ϕ(t)θ̄ ]
. (A.7)

The normalization condition Tr[ρF (t)] = 1 gives 7(t) = γ (t)− 1, while Hermiticity implies
ϕ̄(t) = [ϕ(t)]∗.

By performing the integration over the anticommuting variables, one finds that the function
γ (t) retains its meaning as 〈αα†〉 also in this more general setting, and therefore still obeys
the evolution equation (3.14).

On the other hand, the two additional functions ϕ̄(t) and ϕ(t) in (A.7) represent the
averages of α† and α,

〈α†〉(t) ≡ Tr[α†ρF (t)] =
∫

θ̄ρF (θ̄ , θ; t) eθ̄ θ dθ dθ̄ = ϕ̄(t)

〈α〉(t) ≡ Tr[αρF (t)] =
∫

∂

∂θ̄
[ρF (θ̄ , θ; t)] eθ̄ θ dθ dθ̄ = ϕ(t)

(A.8)

and, due to (3.5), obey the following evolution equations:

ϕ̇(t) = −2(ηF + σF + iωF )ϕ(t) + 2λF ϕ̄(t)

˙̄ϕ(t) = −2(ηF + σF − iωF )ϕ̄(t) + 2λ∗
Fϕ(t).

(A.9)

The general solution is given by

ϕ(t) = e−(ηF +σF )t

{[
cos(�F t) − iωF

�F

sin(�F t)

]
ϕ(0) +

2λF
�F

sin(�F t)ϕ̄(0)

}
(A.10)

where �F = [ω2
F − 4|λF |2]1/2 for ωF � |λF |. Hyperbolic functions appear in the expression

(A.10) when ωF < |λF |; however, thanks to the inequality |λF |2 � ηFσF (compare with
(2.13)), ϕ(t) always vanishes for large times.
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